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Abstract
The outbreak of coronavirus disease 2019 (COVID-19) is caused by the novel 
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). COVID-19 and 
type 2 diabetes (T2D) have now merged into an ongoing global syndemic that is 
threatening the lives of millions of people around the globe. For this reason, there 
is a deep need to understand the immunometabolic bases of the main etiological 
factors of T2D that affect the severity of COVID-19. Here, we discuss how 
hyperglycemia contributes to the cytokine storm commonly associated with 
COVID-19 by stimulating monocytes and macrophages to produce interleukin IL-
1β, IL-6, and TNF-α in the airway epithelium. The main mechanisms through 
which hyperglycemia promotes reactive oxygen species release, inhibition of T 
cell activation, and neutrophil extracellular traps in the lungs of patients with 
severe SARS-CoV-2 infection are also studied. We further examine the molecular 
mechanisms by which proinflammatory cytokines induce insulin resistance, and 
their deleterious effects on pancreatic β-cell exhaustion in T2D patients critically 
ill with COVID-19. We address the effect of excess glucose on advanced glycation 
end product (AGE) formation and the role of AGEs in perpetuating pneumonia 
and acute respiratory distress syndrome. Finally, we discuss the contribution of 
preexisting endothelial dysfunction secondary to diabetes in the development of 
neutrophil trafficking, vascular leaking, and thrombotic events in patients with 
severe SARS-CoV-2 infection. As we outline here, T2D acts in synergy with SARS-
CoV-2 infection to increase the progression, severity, and mortality of COVID-19. 
We think a better understanding of the T2D-related immunometabolic factors that 
contribute to exacerbate the severity of COVID-19 will improve our ability to 
identify patients with high mortality risk and prevent adverse outcomes.
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Core Tip: Type 2 diabetes (T2D) acts in synergy with severe acute respiratory 
syndrome coronavirus-2 infection to increase the progression, severity, and mortality 
of coronavirus disease 2019 (COVID-19). Thus, the immunometabolic bases of the 
main etiological factors of T2D that contribute to the severity of COVID-19 should be 
studied. Here, we discuss the molecular mechanisms by which immune cells, 
hyperglycemia, hyperinsulinemia, loss of pancreatic β-cell mass, insulin resistance, 
advanced glycation end products, endothelial dysfunction, and prothrombotic state 
contribute to the severity of COVID-19. The syndemic between COVID-19 and T2D 
has challenged our ability to identify patients with high mortality risk based on 
scientific evidence.

Citation: Viurcos-Sanabria R, Escobedo G. Immunometabolic bases of type 2 diabetes in the 
severity of COVID-19. World J Diabetes 2021; 12(7): 1026-1041
URL: https://www.wjgnet.com/1948-9358/full/v12/i7/1026.htm
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INTRODUCTION
The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was first 
identified in the city of Wuhan, China in December 2019[1]. Unlike the SARS-CoV and 
the middle east respiratory syndrome coronavirus, SARS-CoV-2 is highly 
transmissible to humans, with case fatality rates ranging from 3% to 11%[2]. A study 
conducted in 1099 patients from China showed that incubation of SARS-CoV-2 takes a 
median of 4 d on average[3], while in the United States, the Centers for Disease 
Control and Prevention has estimated that symptoms can appear within 2-14 d after 
exposure[4]. The main modes of SARS-CoV-2 transmission are respiratory droplets 
produced by infected individuals, aerosols, and direct contact with contaminated 
surfaces or objects[5]. Transmission of SARS-CoV-2 is more likely to occur in the early 
stage of infection; by day 10 after the onset of symptoms, 90% of patients with mild 
disease show a negative RNA test[6,7]. SARS-CoV-2 is the causal agent of the 
coronavirus disease 2019 (COVID-19), an ongoing global pandemic that is affecting the 
lives of millions of people worldwide[8].

Although more than 85% of patients with COVID-19 experience a self-limiting 
illness with symptoms such as fever, headache, myalgia, and diarrhea, some patients 
develop the most severe forms of the disease including pneumonia, acute respiratory 
distress syndrome (ARDS), sepsis, multiple organ failure, and death[9]. For this 
reason, there is a deep need to understand the variety of factors that increase the 
severity of COVID-19.

The most severe and fatal cases of COVID-19 have been reported to occur in 
patients with preexisting comorbidities such as cancer, hypertension, and diabetes 
mellitus[10,11]. In fact, diabetes mellitus is one of the most prevalent comorbidities in 
patients critically ill with COVID-19[12]. Diabetes mellitus is a complex disorder 
characterized by abnormally high blood glucose levels that affect blood vessels and 
nerves. Diabetes ultimately results in chronic damage to skin, feet, immune system, 
eyes, kidneys, brain, and heart[13]. People living with diabetes do not exhibit 
increased susceptibility to SARS-CoV-2 infection compared to non-diabetic individuals
[12]. However, patients with diabetes and COVID-19 are at much higher risk for 
adverse outcomes including admission to intensive care units, invasive ventilatory 
support, hospital-acquired infections, and death[14,15]. Diabetic patients with COVID-
19 have a mortality rate of 7.3% with respect to non-diabetic subjects, among whom a 
mortality of 2.3% has been reported[14].

Type 2 diabetes (T2D), formerly known as adult-onset diabetes, is the most common 
form of diabetes and is characterized by multiple disorders including hyperglycemia, 
insulin resistance, systemic inflammation, hyperinsulinemia, β-cell exhaustion, 
vascular damage, endothelial dysfunction, nerve degeneration, increased platelet 
reactivity and prothrombotic state, and dyslipidemia, among others[16,17]. These 
conditions affect the immune response to pathogens through different mechanisms 
that are not yet fully understood and might influence the severity of COVID-19, as will 
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be further reviewed[16,18-23].

HYPERGLYCEMIA
Hyperglycemia is the most common metabolic alteration associated with T2D and is 
characterized by persistently high blood sugar levels[24]. Hyperglycemia and the 
immune response are known to affect each other in ways that directly impact the 
severity of the SARS-CoV-2 infection. It is well known that high glucose levels can 
activate multiple immune cell types, leading to enhanced production of proinflam-
matory cytokines such as interleukin IL-1 beta, IL-6, and TNF-α, among others[25]. 
This phenomenon is especially relevant to SARS-CoV-2 infection, because patients 
with T2D and COVID-19 exhibit increased serum levels of proinflammatory cytokines 
including IL-1β, IL-6, TNF-α, IL-8, and IFN-γ[26-30]. In patients with SARS-CoV-2 
infection, this so-called “cytokine storm” is accompanied by other inflammation-
related markers such as C-reactive protein, D-dimer, and ferritin, and linked to the 
severity of COVID-19[31]. Exacerbation of the inflammatory response causes a more 
severe acute infection that leads to ARDS and multiple organ failure[26]. Elevated 
levels of IL-6 have been found in both the airway epithelium and blood stream of 
patients with COVID-19 that develop severe ARDS[32].

Accumulating evidence confirms that hyperglycemia is a negative predictor in 
COVID-19 due to increased release of inflammatory mediators, endothelial 
dysfunction, thrombosis, and production of reactive oxygen species (ROS)[33-35]. 
Accordingly, T2D patients critically ill with COVID-19 that show acute hyperglycemic 
peaks at hospital admission have a worse prognosis than patients with glycated 
hemoglobin (HbA1c) levels near to 6.5%[36,37]. Therefore, a high blood glucose value 
at hospital admission is a risk factor for mortality in patients with severe SARS-CoV-2 
infection[11,38].

Persistent hyperglycemia promotes mitochondrial oxidative stress and ROS 
production[39] that in turn leads to blood vessel damage, pancreatic beta cell dysfun-
ction, and impaired insulin secretion[40,41]. Hyperglycemia-induced mitochondrial 
dysfunction triggers release of intracellular signaling molecules that can in turn inhibit 
the T cell response, a phenomenon that has been consistently reported in patients with 
severe COVID-19[42]. Moreover, SARS-CoV-2 can also directly induce mitochondrial 
ROS production by activating the HIF-1α that in turn is able to promote the proinflam-
matory cytokine storm[42,43]. Therefore, it is feasible that hyperglycemia and ROS 
production from T2D act in synergy with SARS-CoV-2 infection to aggravate the 
cellular damage, organ failure, and progression of COVID-19.

In parallel, high blood sugar levels stimulate lactate dehydrogenase (LDH) activity 
and increase lactate production[44]. This phenomenon is of particular interest in 
COVID-19, where it has been reported that increased LDH levels are accurate 
predictors of mortality in patients with severe SARS-CoV-2 infection[45]. Notably, 
increased lactate levels in T2D patients might delay clearance of SARS-CoV-2 by 
inhibiting the retinoic acid-inducible RIG-1-like receptor via the mitochondrial 
antiviral-signaling protein, which results in blockage of interferon production and 
reduced anti-viral response[44].

Likewise, natural killer (NK) cells are innate lymphocytes that eliminate virally 
infected cells. In T2D patients, hyperglycemia appears to increase NK cells that express 
low levels of the NKG2D and the natural cytotoxicity receptor NKp46, resulting in 
decreased degranulation capacity and inefficient anti-viral activity[46-48]. In addition, 
hyperglycemia promotes viral replication in monocytes with concomitant inhibition of 
T cell activation[42]. Some studies have also found low numbers of dendritic cells 
(DCs) in T2D patients with poor glycemic control. In line with this finding, high 
glucose conditions in in vitro cultures appears to prevent monocyte differentiation into 
DCs[49,50]. Moreover, DCs from T2D patients poorly induce T cell proliferation in 
vitro[51]. Taken together, all of this evidence supports a decisive role for hyper-
glycemia in exacerbating COVID-19 progression, since T2D patients with severe SARS-
CoV-2 infection exhibit low cell counts of NK cells, functional DCs, and CD4+ and 
CD8+ T cells[52].

Hyperglycemia in T2D patients has deleterious effects on numerous neutrophil 
functions including migration, phagocytosis, and bacterial killing[53]. Additionally, 
T2D patients have low numbers of IFN-γ-producing cells, which affects viral clearance 
in multiple infections such as those provoked by cytomegalovirus, Epstein-Barr virus, 
and influenza[54]. Moreover, hyperglycemia reduces antibody titers and the ability to 
kill bacteria able to invade the lungs and cause pneumonia such as Staphylococcus 
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pneumoniae and Staphylococcus aureus[55]. Considering the immune effects of 
hyperglycemia within the context of SARS-CoV-2 infection, the mechanisms discussed 
above might partially explain why T2D patients are at a higher risk of developing 
severe COVID-19 and adverse outcomes including increased viral load, sepsis, and 
death. For this reason, uncontrolled hyperglycemia should be considered as a crucial 
risk factor for COVID-19 progression in T2D patients.

HYPERINSULINEMIA AND PANCREATIC Β-CELL EXHAUSTION 
Pancreatic β-cells play a key role in the control of blood glucose levels by secreting 
insulin[56]. During the evolution of T2D, pancreatic β-cells are exposed to gluco-
toxicity, ROS, and endoplasmic reticulum stress, all of which increase β-cell apoptosis 
and dysfunction[56,57]. Additionally, chronic hyperglycemia increases M1-like 
macrophage infiltration in pancreatic islets, where these immune cells can secrete IL-
1β, IL-6, and TNF-α, promoting islet inflammation, β-cell malfunction, and apoptosis
[58,59]. In response, pancreatic β-cells enhance insulin secretion in order to counteract 
persistently high glucose levels, leading to a state of hyperinsulinemia[60]. 
Nevertheless, β-cell mass is eventually exhausted, resulting in impaired insulin 
production. By the time diabetes is typically diagnosed, β-cells show less than fifty 
percent activity and are no longer able to secrete enough insulin to effectively maintain 
blood glucose levels[61,62].

In T2D patients, β-cell dysfunction can be aggravated during COVID-19 due to the 
ability of SARS-CoV-2 to enter the human pancreatic islets via angiotensin-converting 
enzyme 2 (ACE2)[62]. After SARS-CoV-2 invasion, inflammatory cells are recruited to 
pancreatic tissue, where they intensify local inflammation and injury resulting in 
increased peri- and intra islet fibrosis, β-cell mass loss, and hyperglycemia in both non-
diabetic and diabetic patients[63]. Additionally, COVID-19 is characterized by 
persistent acute hypoxia that can affect numerous organs, including pancreatic islets, 
and provoke β-cell apoptosis directly[64]. In this way, SARS-CoV-2-induced pancreatic 
damage contributes to impaired insulin secretion that in turn may accelerate diabetes 
pathogenesis and/or aggravate preexisting diabetes[65]. Similarly, β-cell dysfunction 
that leads to chronic hyperglycemia is accompanied by ROS release, advanced 
glycation end product (AGE) formation, mitochondrial oxidative stress, and low 
antioxidant activity, worsening pancreatic β-cell damage during COVID-19[66-69].

A growing body of evidence suggests that SARS-CoV-2 infection not only affects the 
endocrine pancreas but also the exocrine pancreas[70]. In fact, SARS-CoV-2 appears to 
bind and enter the exocrine pancreatic ductal cells via ACE2[71]. Some studies estimate 
that the prevalence of the development of acute pancreatitis in patients with severe 
COVID-19 is as high as 17%[72].

The mechanisms discussed above highlight the importance of inflammation, 
hyperglycemia, and pancreatic dysfunction as potential contributors to the 
development of severe COVID-19 in patients with T2D[73].

INSULIN RESISTANCE
Insulin resistance is defined as the inability of insulin to exert its functions in insulin-
dependent tissue such as liver, adipose tissue, and skeletal muscle[74]. Insulin 
resistance is the most important etiological factor contributing to the development of 
T2D[75]. There are multiple mechanisms whereby insulin resistance occurs in humans, 
however, systemic inflammation is one of the most recently studied. Obese subjects 
show a constant systemic proinflammatory state characterized by abnormally high 
circulating levels of TNF-α, IL-1β, IL-6, IL-12, and MCP-1[76,77]. In adipose tissue, 
TNF-α induces insulin resistance by activating protein-tyrosine phosphatase 1B that in 
turn can dephosphorylate the insulin receptor substrate-2 (IRS-2) resulting in glucose 
transport arrest and hyperglycemia[78,79]. IL-6 and the NF-κB pathway are also 
involved in insulin resistance and progressive loss of normal glucose tolerance[80,81]. 
In diabetic patients, NF-κB upregulates PKC-θ, AP-1, and c-Jun kinase, which all act 
together to inhibit the insulin receptor via serine/threonine phosphorylation of the IRS
[82].

SARS-CoV-2 infection in pancreatic β-cells not only reduces insulin secretion but 
also provokes a proinflammatory cytokine storm that exacerbates insulin resistance
[15]. It is well known that even mild SARS-CoV-2 infection can trigger a proinflam-
matory cascade that mainly increases TNF-α, IL-6, MCP-1, and IL-1β in the lungs and 
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blood stream[83]. Similarly, SARS-CoV-2 infection produces high levels of IFN-γ 
inducible protein-10 (IP-10) that can itself lower insulin sensitivity[84]. Thus, release of 
proinflammatory molecules in non-diabetic and diabetic patients with untreated 
insulin resistance might aggravate COVID-19 symptoms and increase its severity.

ACE2 is an important link between insulin resistance and severe COVID-19, since it 
acts as the main cellular entry point for SARS-CoV-2[85]. Under normal conditions, 
ACE2 converts angiotensin II into angiotensin 1-7 in order to prevent angiotensin II-
related physiological disturbances such as vasoconstriction, inflammation, oxidative 
stress, and insulin resistance[86]. In mice fed a high-sucrose diet, ACE2 is upregulated 
to remove excess angiotensin II and mitigate its negative effects on insulin sensitivity 
and glucose transport via the glucose transporter protein family[87,88]. T2D patients 
demonstrate increased ACE2 receptor levels that in turn may help SARS-CoV-2 extend 
cellular binding, thus boosting viral load and severity of infection.

Likewise, IFN-γ increases in patients with severe SARS-CoV-2 infection and reduces 
insulin sensitivity via IP-10[89]. Also, IFN-γ produced in response to multiple viral 
infections can cause insulin resistance in skeletal muscle and adipose tissue by 
downregulating PI3K[90,91]. It is thus reasonable to speculate that increased IFN-
gamma production in patients with COVID-19 may aggravate pre-existing insulin 
resistance in both non-diabetic and diabetic patients.

Insulin resistance also seems to prevent the anti-inflammatory T-helper type 2 
differentiation of CD4+ lymphocytes via the extracellular signal-regulated kinase[92]. 
In fact, CD4+ T cells appear to induce abnormal responses to insulin in conditions 
characterized by insulin resistance such as obesity and T2D[93]. Insulin resistance can 
also influence macrophages, an immune cell type thought to play a key role in 
preventing COVID-19-related organ damage[94]. Consistent with these findings, 
monocytes and macrophages that lack insulin signaling show impaired responses to a 
variety of pathogens[95]. In T2D patients, insulin resistance is also associated with 
high blood neutrophil count, which is of particular importance in severe COVID-19 
that is characterized by neutrophilia and monocytopenia[18,96].

FORMATION OF ADVANCED GLYCATION END PRODUCTS
Pathogenesis of T2D is also characterized by the non-enzymatic covalent attachment of 
glucose to molecules such as proteins, lipids, and/or nucleic acids, a process that 
results in the formation of AGEs[97]. In addition to their negative effects on the insulin 
signaling pathway, AGEs have been shown to bind several surface receptors such as 
CD36, scavenger receptors type I and II, and galectin-3[98,99]. Upon receptor 
recognition, AGEs stimulate the release of pro-inflammatory cytokines in lymph-
ocytes, monocytes, and macrophages and promote vascular inflammation and 
endothelial dysfunction[101]. AGEs can also directly bind to the receptor for advanced 
glycation end products (RAGE), a multi-ligand binding protein that promotes 
sustained inflammatory responses[100]. Notably, the lungs can express high RAGE 
levels, which may increase pulmonary inflammation in T2D patients in whom a wide 
variety of AGEs are produced[101]. RAGE is expressed in alveolar epithelial cells, 
vascular smooth muscle pulmonary cells, airway smooth muscle cells, and endothelial 
cells[102-105]. The AGE-RAGE interaction activates the NLRP3 inflammasome 
pathway. NLRP3 polarizes macrophages toward M1, inducing neutrophil extracellular 
trap formation and increasing the Th17 Lymphocyte population. Altogether, these 
inflammatory actions can perpetuate the cytokine storm, leading to pulmonary inflam-
mation and fibrosis in patients with COVID-19[101,106]. This hypothesis is supported 
by the finding that RAGE-dependent inflammatory pathways play a detrimental role 
in pneumonia and ARDS[107].

AGEs produced in diabetic patients are also known to activate the classical 
complement pathway by recognizing C1q, which in turn inactivates CD59 and 
increases vascular injury in blood vessels of T2D patients[108]. In agreement with this 
concept, membrane attack complex deposits present in lung tissue from patients with 
severe COVID-19 has revealed complement-mediated damage which in turn induces 
vascular inflammation and results in extended lung damage[109].

It is well known that excess glucose can be non-enzymatically attached to 
hemoglobin to form HbA1c. This is particularly relevant to T2D and COVID-19 since 
SARS-CoV-2 is capable of altering the 1-beta chain of hemoglobin. This causes iron 
dissociation and porphyrin formation, thus affecting oxygen affinity and bioavail-
ability in peripheral tissues[110]. It follows that excess glycation of hemoglobin in T2D 
patients may contribute to breathing difficulty that progresses to ARDS, a key 
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pathophysiological component of severe COVID-19. Indeed, a recent study reported 
that ACE2 can be glycated in hyperglycemic conditions[111]. Interestingly, ACE2 
glycation appears to increase SARS-CoV-2 affinity and entry into pancreatic and lung 
tissue[112,113]. Good glycemic control has been shown to lower the amount of 
glycated ACE2 in lung tissue, ameliorating pneumonia and COVID-19 severity 
presumably by reducing the availability of viral entry points[113]. Conversely, 
uncontrolled hyperglycemia leads to aberrant formation of glycated ACE2 not only in 
lungs but also in nasal airways, tongue, and oropharynx, which may increase viral 
entry points and disease severity[113].

Last but not least, CD147 is a glycoprotein expressed in type II pneumocytes that 
binds the spike S1 protein, thus favoring SARS-CoV-2 entry into lung cells[114]. 
Evidence in T2D patients suggests that CD147 can be glycated in hyperglycemic 
conditions, which is linked to metalloproteinase upregulation and loss of tight 
junctions that may favor cell entry of SARS-CoV-2 and increase viral load[115]. As we 
have outlined, formation of AGEs appears to play a key role in the severity of COVID-
19, which becomes more relevant in T2D patients with poor glycemic control, a 
condition that favors protein glycation.

ENDOTHELIAL DYSFUNCTION, VASCULAR DAMAGE, AND PROTHRO-
MBOTIC STATE
The vascular endothelium maintains homeostasis by modulating blood flow, 
fybrinolysis, coagulation, platelet adherence, and immune cell trafficking in response 
to cell injury[116]. Impaired vascular endothelium function in patients with diabetes 
mellitus is considered a risk factor for cardiovascular disease[117]. Emerging evidence 
suggests that COVID-19 aggravates vascular pathology due to proliferation of SARS-
CoV-2 in endothelial cells. This induces cellular damage, apoptosis, and disruption of 
the vascular barrier, which is especially relevant in T2D patients that show impaired 
angiogenesis[118-120]. Notably, endothelial dysfunction is a central feature in COVID-
19 pathogenesis[121]. Patients with COVID-19 have nitric oxide (NO) deficiencies that 
lead to increased vascular contraction and reduced ROS neutralization[122,123]. Upon 
SARS-CoV-2 infection, the vascular endothelium undergoes vascular leakage and 
enhanced blood clotting. Subsequent recruitment of immune mediators results in 
inflammation that perpetuates tissue damage and vascular impairment[124]. As 
mentioned above, COVID-19 is accompanied by a high number of neutrophils, 
proinflammatory immune cells that also contribute to vascular damage in T2D. 
Diabetic patients have neutrophils with enhanced oxidative activity that produce high 
free radical levels and neutrophil extracellular traps (NETs) which can cause direct 
injury to blood vessels[125,126]. Neutrophils are also major producers of myeloper-
oxidase, a peroxidase enzyme that binds to the vascular endothelium and increases 
blood vessel damage in T2D patients[127]. These lines of evidence support a 
deleterious synergistic effect of T2D on COVID-19, wherein hyper-reactive neutrophils 
may directly injure the vascular endothelium and worsen the patient’s outcome[96]. 
Interestingly, SARS-CoV-2 can increase NET release by infecting neutrophils. 
Increased formation of NETs can then directly injure the lung epithelium.

Proinflammatory cytokines play a decisive role in endothelial dysfunction. It is well 
known that IL-6 is upregulated in T2D and is associated with endothelial damage and 
atherosclerosis[128]. In patients with severe COVID-19, IL-6 induces chemokine 
expression, leukocyte trafficking, immune cell extravasation toward arterial walls, NO 
reduction, increased oxidative stress, and exacerbated inflammation of blood vessels
[129]. TNF-α, another important proinflammatory cytokine involved in the COVID-19 
cytokine storm, accelerates atherosclerosis via vascular cell adhesion molecule-1, E-
selectin, and MCP1, which impairs vasodilatation and promotes endothelial cell 
apoptosis[81]. Post-mortem examination of lung tissue from patients severely infected 
with SARS-CoV-2 revealed massive mononuclear and polymorphonuclear cell infilt-
ration, supporting the role of immune cell recruitment in COVID-19 progression[118]. 
These findings indicate that chemoattraction and recruitment of immune cells act 
together with endothelial dysfunction to induce vascular damage in patients with T2D, 
which may worsen the severity of COVID-19 by increasing vascular leaking and 
prothrombosis.

Disruption of vascular integrity promotes basement membrane exposure, 
coagulopathy, D-dimer release, and fibrinogen and platelet activation, all of which are 
important biomarkers for poor prognosis in COVID-19[130-133]. It is well known that 
the prothrombotic state common in patients with T2D may increase the occurrence of 
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severe coagulopathy in patients critically ill with COVID-19[134]. In fact, the severity 
of COVID-19 increases in parallel with pulmonary embolism, microcirculatory 
malfunction, and disseminated intravascular coagulation[135,136]. Microvascular and 
macrovascular thromboembolic events have been documented in the kidneys, lungs, 
spleen, and brains of SARS-CoV-2 infected patients[137-140]. Thrombotic incidence of 
about 30% has been reported in lungs[141] and incidence of deep venous thrombosis 
as occurs in the lower limbs of T2D patients has been reported at 46%[142].

The mechanisms underlying thromboembolic events in T2D patients with severe 
COVID-19 remain unclear, but persistent inflammation has now emerged as a 
potential contributor[143]. As described above, levels of several proinflammatory 
cytokines, including TNF-α, IL-6, and IL-8 are elevated in patients with COVID-19 
who required hospitalization[144,145]. Interestingly, some of these cytokines have 
prothrombotic effects by themselves[146]. For instance, there is a positive association 
between elevated IL-6 and increased fibrinogen levels[146]. During sepsis, monocytes 
and macrophages release TNF-α as well as tissue factors that activate clotting 
pathways[147]. Besides inducing proinflammatory cytokine production, SARS-CoV2 
has been shown to induce expression of procoagulant genes such as fibrinogen, tissue 
factor, factor II, and factor X[148,149] in vitro culture models. During numerous viral 
infections and sepsis, activation of the innate immune system leads to increased 
activation of the complement system, von Willebrand factor, tissue factor, and factor 
VIIa[148,150,151]. Likewise, complement activation during COVID-19-related sepsis 
intensifies the cytokine storm and perpetuates microvascular damage[152].

T2D increases mortality risk in COVID-19 due to the preexisting prothrombotic state 
secondary to diabetes, where hyperglycemia by itself appears to play a contributing 
role[151]. Human aortal endothelial cells cultured in high glucose in vitro were shown 
to trigger both inflammatory and prothrombotic pathways[153]. Similarly, 
hyperglycemia acts in synergy with neutrophils to release calprotectin, a protein that 
can bind RAGE on Kupffer cells and induce IL-6 synthesis. IL-6 increases throm-
bopoietin production, which enhances proliferation and expansion of thrombotic 
precursors and leads to thrombocytosis[154]. Similarly, P2Y12, a receptor expressed on 
the surface of platelets that plays essential roles in platelet activation, may be elevated 
in T2D patients, and facilitate platelet adhesion to vascular endothelium[155,156]. 
Consistent with these findings, numerous reports have demonstrated that the 
prothrombotic state can be mitigated by lowering blood glucose concentration[154]. 
Thus, several factors associated with T2D including endothelial dysfunction, vascular 
damage, systemic inflammation, and hyperglycemia can directly aggravate the 
prothrombotic state and increase mortality risk in patients with severe COVID-19[138,
141,157].

CONCLUSION
COVID-19 is an ongoing global pandemic that has challenged the ability of healthcare 
providers to treat the most vulnerable patient populations, such as those living with 
preexisting T2D. Indeed, managing the syndemic between the two current pandemics 
of COVID-19 and T2D has become a major contemporary public health challenge. We 
have shown that T2D acts in synergy with SARS-CoV-2 infection to accelerate disease 
progression, increase severity, and heighten the mortality risk of COVID-19. We have 
discussed the mechanisms whereby hyperglycemia contributes to the “cytokine 
storm” characteristic of severe SARS-CoV-2 infection by stimulating monocytes and 
macrophages to produce IL-1β, IL-6, and TNF-α in the airway epithelium. The main 
mechanisms whereby hyperglycemia promotes ROS release, inhibition of T cell 
activation, and NET formation in the lungs of patients with severe SARS-CoV-2 
infection have also been examined. We have reviewed the molecular mechanisms by 
which proinflammatory cytokines induce insulin resistance and exert deleterious 
effects on pancreatic β-cell exhaustion in T2D patients critically ill with COVID-19. We 
have also studied the effect of excess glucose on AGE formation and the role of AGEs 
in perpetuating pneumonia and ARDS. Finally, we have discussed the contribution of 
preexisting endothelial dysfunction secondary to diabetes to the development of 
neutrophil trafficking, vascular leaking, and thrombotic events in patients with severe 
SARS-CoV-2 infection (Table 1). We have not, however, addressed the possible contri-
bution of other components of T2D such as nerve injury, hyperglucagonemia, 
adiposity, dyslipidemia, endoplasmic reticulum stress, glomerular and myocardial 
damage, and hypovitaminosis D to the severity of COVID-19. Importantly, the efficacy 
of vaccines against SARS-CoV-2 should be rigorously scrutinized in patients with T2D, 
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Table 1 Immunometabolic mechanisms of the main etiological factors associated with type 2 diabetes and their implications in the 
development of severe severe acute respiratory syndrome coronavirus-2 infection

Etiological component of T2D Effect on immune responses Implications in COVID-19 Ref.

Stimulation of monocytes and 
macrophages to release IL-1β, IL-6, 
and TNF-α

Promotion of the cytokine storm and 
exacerbated inflammatory responses

Nielsen et al[23], Blair et al[24]

Mitochondrial oxidative stress and 
production of reactive oxygen species

Activation of the proinflammatory cytokine 
storm

Robertson et al[39]

Stimulation of lactate dehydrogenase 
activity

Upregulation of lactate pathway during 
severe COVID-19

Zhang et al[40]

Increased NK cells with low levels of 
NKG2D and NKp46

Decreased degranulation and inefficient 
antiviral activity

Berrou et al[47]

Low number of dendritic cells Inefficient antigen presentation and 
decreased T cell activation

Zhong et al[52]

Inhibition of T cell activation and 
proliferation

Increased viral load and COVID-19 
progression

Macia et al[51]

Decreased neutrophil migration and 
phagocytosis

Impaired viral clearance Alba-Loureiro et al[53]

Low number of IFN-γ-producing cells Impaired antiviral response Kalantar et al[54]

Hyperglycemia

Reduction of antibody titers Inability to kill infected cells and increased 
viral load

Mathews et al[55]

β-cell apoptosis Enhanced pancreatic damage through 
SARS-CoV-2 direct binding to ACE2 in β-
cells

Weir[57]

β-cell dysfunction through 
endoplasmic reticulum stress

Increased pancreatic inflammation Butler et al[56]

M1-like macrophage infiltration Islet fibrosis and β-cell mass loss Inoue et al[58], Westwell-
Roper et al[59]

Impaired insulin production Increased hyperglycemia and promotion of 
proinflammatory cell activation

Zheng et al[64]

Pancreatic β-cell exhaustion and 
hyperinsulinemia 

Deterioration of exocrine pancreas Increased pancreatic inflammation Hayden et al[66]

Stimulation of proinflammatory 
cytokine release into circulation

Exacerbated systemic inflammation Tabák et al[75], Akbari et al
[80]

Inactivation of the insulin signaling 
pathway via NF-κB

Suppression of IP-10 production and 
reduced insulin sensitivity 

Antuna-Puente et al[81]

Increased ACE2 receptor levels Increased viral load and COVID-19 
progression

Kuba et al[85]

Decreased Th2 cell differentiation Reduction of lymphocytes with anti-
inflammatory functions

Viardot et al[92]

Impaired ability of macrophages to 
respond to pathogens

Monocytopenia, COVID-19 progression, 
increased mortality risk

Rizo-Téllez et al[96]

Insulin resistance

High blood neutrophil count Neutrophilia, COVID-19 progression, 
increased mortality risk

DeFronzo et al[16]

Activation of the RAGE and sustained 
inflammatory responses

Increased pulmonary inflammation and 
mortality risk

Oczypok et al[101]

Increased Th17 lymphocytes Perpetuation of the cytokine storm and 
pulmonary inflammation 

Wang et al[30]

Activation of the classical complement 
pathway

Complement-mediated damage and 
membrane attack complex formation in 
lung tissue

Lupu et al[150]

Non-enzymatic attachment of glucose 
to hemoglobin

Alteration of the hemoglobin 1-β chain, less 
oxygen bioavailability in peripheral tissues 
and breathing difficulty

Means[110]

Non-enzymatic attachment of glucose 
to ACE2

Increased SARS-CoV-2 affinity and 
infection in pancreatic and lung tissue

Zhao et al[112], Bao et al[114]

Glycation of CD147 in type II Promotion of SARS-CoV-2 cell entry and 

Advanced glycation end products

De Francesco et al[115]
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pneumocytes increased viral load in pneumocytes

Neutrophil trafficking impairment Hyper-reactive neutrophils that injure the 
vascular endothelium

Kraakman et al[154]

Increased prothrombotic state Enhanced blood clotting and severe 
coagulopathy

McFadyen et al[134]

Hyper-activation of neutrophils in 
blood vessels

Vascular damage, blood vessel leaking, and 
sepsis

Joshi et al[126]

Impaired vasodilatation with release 
of IL-6 and TNF-α

Microcirculatory malfunction and 
increased fibrinogen levels

Chi et al[29], Mangalmurti et 
al[27]

Recruitment of immune cells Blood vessel leaking and thrombosis Ranucci et al[146]

IL-6 production Increased thrombopoietin production Kraakman et al[154]

Endothelial dysfunction and 
prothrombotic state

Increased P2Y12 platelet receptor Enhanced platelet adhesion and thrombosis Dorsam et al[155]

Summary of the main immunometabolic mechanisms by which immune cells and cytokines act in synergy with preexisting hyperglycemia, β-cell 
dysfunction, hyperinsulinemia, insulin resistance, advanced glycation end products, endothelial dysfunction, and prothrombotic state to increase the 
severity, progression, and mortality of coronavirus disease 2019 in patients with type 2 diabetes. COVID-19: Coronavirus disease 2019; SARS-CoV-2: Severe 
acute respiratory syndrome coronavirus-2; T2D: Type 2 diabetes; NK: Natural killer; ACE2: Angiotensin-converting enzyme 2; IP-10: IFN-γ inducible 
protein-10; RAGE: Receptor for advanced glycation end products.

with careful consideration for all of the factors discussed herein. A better under-
standing of the T2D-related immunometabolic agents that contribute to exacerbate the 
severity of COVID-19 will improve our ability to identify patients with high mortality 
risk and prevent adverse outcomes.
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